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Resonance theory of the pressure-induced 
incommensurate phase in ammonium hydrogen oxalate 
hemihydrate 

Wilson C K Poon 
Department of Physics, University of Edinburgh, James Clerk Maxwell Building, The 
King‘s Buildings, Mayfield Road, Edinburgh EH9 352, UK 

Received 11 July 1990 

Abstract. The resonance theory of incommensurate (IC) phases in insulators studied by 
Heine and McConnell is reviewed and applied to ammonium hydrogen oxalate hemihydrate, 
in which an IC phase is stabilized above 3 kbar between the room-temperature paraelastic 
phase and the low-temperature ferroelastic phase. It is suggested t h t  this IC phase is due to 
a structural resonance between the ferroelastic ordering mode and an incipient ferroelectric 
ordering mode. A simple pressure dependence of the latter reproduces the topology of the 
p-T phase diagram and the pressure dependence of the IC wavevector at TrC. Specific 
predictions concerning dielectric behaviour and diffuse scattering round satellite positions 
under pressure are made. 

1. Introduction 

Ammonium hydrogen oxalate hemihydrate (AHO), NH4HC2O4.:H20, has attracted 
interest recently because, upon cooling, it goes through an incommensurate (IC) phase 
only under the application of hydrostatic pressure [ l ,  21. Its phase diagram is shown in 
figure 1. Phase I is orthorhombic [3]. On cooling at ambient pressure, a second-order 
equitranslational ferroelastic phase transition occurs at Tc = 145.6 K to a monoclinic 
structure (phase 11) [4]. Above pc  = 3 kbar, an IC phase appears [ l ]  (phase 111) with q 
along c* .  q shows a large pressure dependence, moving from 0.147 c* at 4.3 kbar to 
about 0.25 c* at 8 kbar but appears to be temperature independent [2]. 

Heine and McConnell have published a series of papers in which they proposed a 
general theory to account for the occurrence of Icphasesin insulators. They have applied 
this theory successfully to diverse materials such as NaN02 and various minerals (see 
references in [ 5 ] ) .  In this paper, we show that a slightly extended version of their theory 
can account for the topology of the A H 0  phase diagram. This leads to a number of specific 
predictions which should be susceptible to experimental verification. 

2. The resonance theory of IC phases 

Heine and McConnell suggest that IC phases occur in insulators because of ‘structural 
resonance’ between two ordering modes. We review their theory in this section. 
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Figure 1. The p-T phase diagram of AHO (after 
[2]). Phase I is orthorhombic; the ferroelastic 
phase I1 is monoclinic. Phase I11 is IC. 

Figure 2. Typical phase diagram of a material 
showing an IC phase under ambient pressure. 

Figure 3. A schematic diagram showing how an 
interaction of the form (2.1) will stabilize spatially 
inhomogeneous rp and W modes varying in quad- 
rature. 

Figure 4. Curves of Aeff(q) at successively lower 
temperatures near the IC transition. 

Consider a material (such as NaN02) with a phase diagram such as that shown in 
figure 2. Heine and McConnell propose that the high-symmetry phase I has two possible 
modes of transformation, li, and cp, where q acting alone will give the 1 4  I1 transition. 
The interaction between I/ and cp has the form 

Gint = h(qVli, - 0 ~ ) .  (2.1) 
This means that there is no interaction at k = 0 (cf equation (2.3)), and the variation in 
3 and Q, must be such that they are always in quadrature (figure 3). An interaction of 
the form (2.1) stabilizes a spatially inhomogeneous (or Q,) because the condensation 
of cp (or q) in regions of large V q  (or Vcp) allows relief of stress. 
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Working in Fourier space, the free energy is then written as 

G = Go + CA(q)W: w q  + H(q)w: ( P q  + m(P: 9)9‘ 
q 

An interaction of the form (2.1) is obtained as the second term in the Taylor expansion 
of 

( 2 . 3 ~ )  

the first term of which is zero for symmetry reasons. Fourier transform of ( 2 . 3 ~ )  shows 
that, to first order, H ( q )  takes the form 

(2.3b) 

Gint = 2 2 V(l)H(l  - l ’ ) ( ~ ( l ’ )  
II‘ 

H(q)  = iq - H, 
in equation (2.2) with 

HI = z A H ( A )  
A 

(2.3c) 

where h = I - I’ is a nearest-neighbour lattice vector. 
If w acting on its own leads to a phase transition at T = To with q = 0, we can write 

A(q, T )  = a(T - To) + A2q2 + A4q4 + . . . . (2.4) 
The change in sign of the first term results in an instability which gives the commensurate 
low-temperature phase. 

The heart of the argument of Heine and McConnell then runs as follows. Rewrite 
equation (2.2) as 

G = GO + Aeff(q)W: W 9  (2.52) 

(dropping the summation sign from here on, considering only one particular q )  with 

Aeff(q) = A(q) + H ( q ) ( ~ q / ~ 9  + H*(q)q,* /v: + B(q)q: ( P ~ / v :  ~ 9 -  (2.5b) 

Minimizing (2.5b) with respect to q9/v9 and its complex conjugate and substituting back 
into (2.5b) then gives 

Aeff(q) = A(q) - H*(q)H(q)/B(q)* (2 * 6) 

This means that Aeff(q) may go through zero and precipitate an instability at T = 
TI, > To. Using (2.3b) and (2.4) and expanding 

B(q)  = Bo + B2q2 + . . . . 

A,ff(q, T )  = u ( T -  To) + (A2 - H:/Bo)q2 + A4q4 + . . . . 

A 2  - H:/Bo < 0 

(2.7) 

(2.8) 

(2.9) 

Heine and McConnell obtain from (2.6) 

Figure 4 shows Aeff(Q) at successively lower temperatures. These plots assume that 

i.e. there is a downward curvature at q = 0. Then 

Aeff(min) = a(T - To)  - iA4(H:/Bo - (2.10) 

(where the 4 in the second term was given incorrectly as t in the paper of Heine and 
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McConnell). A,,(min) first hits zero at the non-zero value of Q given by 

Q2 = (1/2A4)(H?/B0 - A21 (2.11) 

at the IC transition temperature 

TIC = To + A (2.12) 

where A is given by 

A = (1/4aA4)(H?/Bo - A2)'. (2.13) 

Equation (2.9) is therefore seen to be the condition for the occurrence of an IC phase. 
By considering higher-order terms in wq which will limit the IC amplitude below TIC, 
Heine and McConnell show further that the commensurate transition temperature is 

(2.14) 

At this temperature, a uniform high value of +becomes energetically more favourable 
than the inhomogeneous V and cp in resonance (figure 3) in the IC structure. 

We need to mention one further aspect of the work of Heine and McConnell- 
symmetry. The free energy G must have the full symmetry of the high-temperature 
symmetry phase. Since 

Tc = To - 4.45A. 

H(qbqV,* = iq*HlcpqV,* 
occurs in (2.2), then the direct products of the irreducible representations (the r-values) 
of q,  cp and V must contain the identity representation. Equivalently 

T(q)  = r(cp)r(+h (2.15) 

This imposes severe restrictions on the kinds of modes V and cp which can interact via 
(2.1) to give an IC structure with a particular observed direction of q. 

Such is the outline of the resonance theory of IC phases in insulators. Heine and 
McConnell recognize that detailed extensions will be necessary for applications to 
particular materials. We shall attempt such an extension for AHO in the rest of this work. 

3. Phase transitions in AHO 

Under ambient condition, AHO is orthorhombic (Pmnb, Z = 8) [3]. In this structure, 
each HC20; ion occupies a general position, while both the H 2 0  and NH,' lie on a 
mirror plane perpendicular to a (figure 5). The NH; ions are further subdivided into 
two groups, the mirror plane being only statistical for one of these groups of ammonium 
ions, which are in fact disordered at room temperature. 

The original motivation [4,6] for looking for a low-temperature phase transition in 
AHO was driven by the consideration that the arrangement of NH: groups in the unit 
cell is very similar to that in the room-temperature phase of (NH4),SO4 (Pnam, 2 = 4), 
which undergoes a displacive transition [7] at 223 K into a ferroelectric phase (Pna2,, 

Low-temperature work on AHO shows that it indeed undergoes a phase transition at 
Tc = 145.6 K, transforming into a monoclinic ferroelastic phase (P2,/n, Z = 8) owing 
to the ordering of one family of NH: ions, destroying the mirror plane. The ferroelastic 
order parameter has B2, symmetry. This transition has been studied in some detail [8,9]. 

z= 4). 
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Figure 5. The structure of AHO at room tem- 
perature projected onto (001). 

200 300 
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Figure 6. The temperature behaviour of the prin- 
cipal dielectric constants of AHO at 1 bar (after 
[W. 

Early dielectric measurements on AHO did, however, show some interesting results 
which have not been commented upon since the recent revival of interest in this material. 
While and show only very slight discontinuities in slope at Tc = 145.6 K, q1 shows 
a large anomalous behaviour [6] (figure 6). (Note that ell and 
and in [6], owing to different space group settings.) Above Tc = 145.6 K,  the behav- 
iour of E ~ ,  could be very accurately (to 0.3%) described by a Curie-Weiss law 

here correspond to 

E11 = Eg + C / V -  z - t r )  (3.1) 
with E~ = 5.10, C = 735 K and T,, = -20 K. That is to say, AHO is an incipient ferro- 
electric. The polarization of the hypothetical ferroelectric phase would be along the 
orthorhombic a direction; in other words, the ferroelectric order parameter would have 
symmetry B3". 

We have shown elsewhere [lo] that the collapse of at the ferroelastic phase 
transition temperature is explained by a strain-induced biquadratic coupling between 
the ferroelastic (B2& and ferroelectric (B3J order parameters. 

4. Resonance theory of the IC phase in AHA 

In the notation of Heine and McConnell, we take the ferroelastic (BZg) order parameter 
in AHO as the q~ mode. The condensation of this mode at ambient pressure gives the 
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I + I1 ferroelastic transition at 145.6 K. We know that the IC wavevector is along c* , 
which transforms as B1,. Application of (2.15) then gives the result that the resonance 
mode qi in the IC phase of AHO must transform as B3, (i.e. x). The discussion at the end 
of the last section shows that there indeed exists a mode ordering in AHO with this 
symmetry-the ferroelectric mode! We propose that this is the Q, mode which, in 
structural resonance with the ferroelastic ?$ mode, leads to IC behaviour in AHO. 

Reference to (2.9) shows that the occurrence of an IC phase due to structural 
resonance depends on having a large H:/Bo, i.e. a large gradient interaction (large HI) ,  
or soft Q, mode (small Bo). The lack of an IC phase in AHO at ambient pressure will then 
arise because v, never becomes soft enough; at p = 0 kbar, AHO is only an incipient 
ferroelectric, with T,, = -20 K in (3.1). However, a positive pressure coefficient for T,, 
will lead to a drop in Bo with increasing pressure, leading to the possibility of stabilizing 
the IC phase. 

Let us write 

Bo = b[T-  o m  (4.1) 
and use the simplest form of w i ( p )  that will give a positive pressure coefficient: 

Forp < p , ,  Bo will always be too large for condition (2.19) to be satisfied. In other words, 
the coefficient of q2 in equation (2.8) will always be positive for all T 2 To,  so that cooling 
will result in a phase transition at To = 146 K when the ferroelastic (9) mode condenses 
out (figure 7 ( a ) ) .  An increase in pressure will, however, lead to a drop in Bo. A t p  = p c ,  
the coefficient of q2 in equation (2.8) becomes zero at T = To. The IC phase just appears 
but has an infinitesimal stability range. At higher pressures still, a minimum for Ae,(q) 
away from the origin will appear at a temperature T*  > To. Further cooling from T *  
will bring about the transition into the IC phase which now has a finite stability range 
(figure 7( 6)). 

We can now calculate the phase diagram of AHO based on this model. First, the IC 
phase is stable above 3 kbar, so that p ,  = 3 kbar. At this pressure, as we have already 
discussed, the coefficient of q2 in equation (2.8) becomes zero at T = To. Using equations 
(4.1) and (4.2) we therefore get 

A 2  = H:/bTo (4.3) 

at p = p , .  From the E , ~ ( T )  data of Albers and Kuppers we get u i ( p  = 0) = -20 K in 
equation (4.1), so that equation (4.2) gives Q i p ,  = 20 K, or 52; = 6.67 K kbar-'. 

Using equation (4.3), we write the coefficient of q 2  in equation (2.8) as 

(H?/b){l/To - 1/[T - Q % P  - pc)l}. 

T* = To + Q i ( p  - p , ) .  (4.4) 

Ae,(min) = a(T - To) - (B2/2A,){1/[T - Q ~ ( P  - pc)I) (4.5) 

B = H:/b. (4.6) 

This changes sign at 

Again, substituting equation (4.3) into equation (2.10) gives 

where 
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Figure 7. Curves of ACff(q) at successively lower 
temperatures (a)  below and ( b )  above the critical 
pressurep,, above which an IC phase is stabilized. 

Figure 8. The calculated phase diagram and press- 
ure dependence of the IC wavevector (141, in units 
of Ic*l) of AHO (-) compared with exper- 
imental data ( -  - -). See text for details con- 
cerning the position of the broken lines in the 
phase diagram. The shaded area is thep-Tregion 
in which diffuse scattering round satellite posi- 
tions should be observable. 

The locus of ( p ,  T )  satisfying 

A,,(min) = 0 (4.7) 

will then map map out the boundary between phase I and phase 111 of AHO. 

equation (2.14) to get Tc for the 111- I (IC+ commensurate) transition. 

of B2/2A4 to a. 

IC wavevector 

At each pressure we can calculate (see equation (2.12)) A = TIC - To, and then 

Note that the actual calculated phase boundaries obtained depend only on the ratio 

Finally, substituting equation (4.3) into equation (2.11), we get an equation for the 

42 = v I / [ T  - Q ~ ( P  - ~ , ) l  - 1/To 

to within a multiplicative factor V'm. 
The phase diagram of AHO calculated from our model using 

(B2/2A4)/a = 5 X lo6 
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is shown in figure 8, while the value of the IC wavevector as a function of pressure 
calculated using 

= 7c* 

is also shown in figure 8. 

5. Comparison with experiment 

It is immediately obvious that our calculated phase diagram reproduces the topology of 
the observed phase diagram (see figure 1). One feature in the real phase diagram which 
is not expected to be reproducible by our model is the pressure dependence of the I + I1 
phase transition temperature. This feature has not been built in, so that in our results 
the I + I1 phase boundary at low pressures is vertical. In reality, dTc-dp = -5 K kbar-'. 

Bearingthis feature inmind, wecanattempt amorequantitativecomparisonbetween 
our calculations and experimental observation. The observed I -+ I1 phase boundary 
was extrapolated into the phase I11 region in figure 1. The dispositions of the actual 
I -+ I11 and I11 -+ I boundaries relative to this extrapolated line were then noted, and 
the values transferred to figure 8 as points similarly disposed on either sides of the vertical 
line T = To. The resultant curves agree remarkably well with the calculated boundaries. 

There is also good agreement between the calculated and observed behaviours of / q /  
at TI ,  (figure 8). A na'ive application of equation (4.8), however, would suggest a very 
strong increase in /q1 with decreasing temperature at any particular pressure. Preliminary 
observations [2] in restricted temperature ranges, however, show apparently that /q1 is 
temperature independent. 

The above discussion, of course, assumes that the pre-factor in equation (4.8) is 
temperature independent. Heine and McConnell have pointed out that this is often not 
the case. This pre-factor written out in full is (using equation (4.3)) 

H:/2bA4 = A 2 T o / 2 A 4 .  

Heine and McConnell have argued that A ,  and A4 should both be very sensitive to the 
amount of short-range order in the vicinity of TIC and therefore can be very sensitively 
temperature dependent. This is, for example, the case in NaNO,, where the large degree 
of short-range order just below T I ,  in fact leads to a decreasing / q /  with decreasing 
temperature. A similar effect in AHO could compensate for the more obvious tem- 
perature dependence of / q /  in equation (4.8) to give the observed behaviour. 

6. Predictions of the theory 

Our phenomenological theory of the IC phase in AHO as developed in section 4 makes 
two predictions that should be susceptible to experimental verification. 

(i) The incipient ferroelectric ordering should be stabilized by pressure. If the work 
of Albers and Kuppers shown in figure 6 is repeated under pressure, the value of T,, 
obtained by the Curie-Weiss fit (3.1) is predicted to reach 0 K at pc = 3 kbar (see 
equation (4.21)). 

(ii) Reference to figure 7 ( b )  shows that, within the range of temperature 
TI,  < T < T " ,  diffuse scattering should be observable at the q where Aeff(min) occurs 
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at each pressure. T* at each pressure is given by equation (4.4) and is plotted in figure 
8. The shaded area between T * ( p )  and the I + I11 phase boundary is the region where 
one could expect to observe diffuse scattering at satellite positions. 

Work along these two directions is under way in our laboratory. 
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